#### C42

Journal of Organometallic Chemistry, 168 (1979) C42–C44 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

## **Preliminary communication**

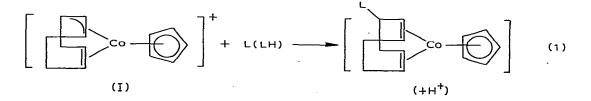
# KINETICS OF NUCLEOPHILIC ATTACK ON COORDINATED ORGANIC MOIETIES

## XII\*. ADDITION OF TRIPHENYLPHOSPHINE TO [(C<sub>8</sub>H<sub>11</sub>)Co(C<sub>5</sub>H<sub>5</sub>)]BF<sub>4</sub>

LEON A.P. KANE-MAGUIRE, PAUL D. MOUNCHER,

Chemistry Department, University College Cardiff, P.O. Box 78, Cardiff CF1 1XL, Wales (Great Britain)

and ALBRECHT SALZER


Anorganische-Chemisches Institut der Universität Zürich, Zürich (Switzerland)

(Received December 19th, 1978)

#### Summary

A stopped-flow investigation of the reversible addition of Ph<sub>3</sub>P to  $[(C_8H_{11})Co(C_5H_5)]^+$  indicates the rate law,  $k_{obs} = k_1[Ph_3P] + k_{-1}$ . The low  $\Delta H_1^{\ddagger}$ of 21.0 ± 1.2 kJ mol<sup>-1</sup> and the negative  $\Delta S_1^{\ddagger}$  of  $-114 \pm 5$  J K<sup>-1</sup> mol<sup>-1</sup> are consistent with rapid addition to the envl ligand. The higher  $\Delta H_{-1}^{\ddagger}$  of 86.2 ± 5.1 kJ mol<sup>-1</sup> and the positive  $\Delta S_{-1}^{\ddagger}$  of  $+60 \pm 17$  J K<sup>-1</sup> mol<sup>-1</sup> are as expected for the reverse dissociation. Preliminary studies show that the related complex  $[(C_7H_9)Co(C_5H_5)]^+$  is at least 65 times more electrophilic towards Ph<sub>3</sub>P.

The cation  $[(C_8H_{11})Co(C_5H_5)]^+$  (I) is known [1] to react with a variety of nucleophiles (L = H<sup>-</sup>, acetylacetone, CN<sup>-</sup>; LH = morpholine) according to eq. 1. In pursuing our interest in the formation of metal-stabilized *C*-phosphonium ions we recently observed [2] analogous additions on I with L = Ph<sub>3</sub>P and i-Pr<sub>3</sub>P. Herein we report kinetic data for the addition of Ph<sub>3</sub>P to I, which provide the first quantitative information on nucleophilic addition at a  $\pi$ -hydrocarbon co-



| Temperature (°C) | $k_1 \pmod{\text{dm}^{-3} \text{s}^{-1}}$ | $k_{-1}$ (s <sup>-1</sup> ) |  |
|------------------|-------------------------------------------|-----------------------------|--|
| 0.15             | 696 ± 6                                   | 0 ± 0.16                    |  |
| 6.2              | 776 ± 26                                  | 0.48 ± 0.69                 |  |
| 19.4             | 1150 ± 40                                 | $3.82 \pm 0.64$             |  |
| 23.9             | 1330 ± 19                                 | 5.10 ± 0.50                 |  |
| 27.0             | 1560 ± 7                                  | $7.24 \pm 0.18$             |  |
| 28.9             | 1690 ± 55                                 | 8.30 ± 1.41                 |  |

 TABLE 1

 KINETIC DATA FOR THE REACTION OF [(C.H..)Co(C.H.)]BF.

ordinated to a metal in the cobalt triad. As far as we are aware it is also the first kinetic investigation of nucleophilic attack on an enyl ligand.

Reaction 1 (L = Ph<sub>3</sub>P) is rapid in acetone solvent and is accompanied by a large decrease in absorbance at 490 nm. It was conveniently monitored at this wavelength using a thermostatted stopped-flow spectrophotometer. The rate law 2 was observed in the concentration range [Ph<sub>3</sub>P] =  $3-50 \times 10^{-3}$  mol dm<sup>-3</sup>, which is consistent with the equilibrium process 3. Derived values for the forward addition ( $k_1$ ) and the reverse dissociation ( $k_{-1}$ ) are collected in Table 1.

$$k_{\rm obs} = k_1 [Ph_3P] + k_{-1}$$
 (2)

$$[(C_8H_{11})Co(C_5H_5)]^+ + Ph_3P \underset{k_{-1}}{\underbrace{k_1}} [(Ph_3PC_8H_{11})Co(C_5H_5)]^+$$
(3)

Activation parameters associated with  $k_1$  are  $\Delta H_1^{\ddagger} = 21.0 \pm 1.2 \text{ kJ mol}^{-1}$  and  $\Delta S_1^{\ddagger} = -114 \pm 5 \text{ J K}^{-1} \text{ mol}^{-1}$ . The large negative  $\Delta S_1^{\ddagger}$  is as expected for an associative process, and is similar to values found [3–5] for related reactions considered to involve direct addition of phosphines to coordinated  $\pi$ -hydrocarbons. The rapidity of  $k_1$  is reflected in the very low enthalpy of activation. On the other hand, the much larger  $\Delta H_{-1}^{\ddagger}$  value of 86.2  $\pm$  5.1 kJ mol<sup>-1</sup> is consistent with bond cleavage in dissociation  $k_{-1}$ , as is the positive  $\Delta S_{-1}^{\ddagger}$  of  $\pm 60 \pm 17 \text{ J K}^{-1} \text{ mol}^{-1}$ .

Preliminary studies of the related reaction of  $[(C_7H_9)Co(C_5H_5)]^+$  (II) with Ph<sub>3</sub>P (eq. 4) show that it is complete within the time of mixing at 20°C and  $[Ph_3P] = 3 \times 10^{-3} \text{ mol dm}^{-3}$ . This indicates a  $k_1$  value larger than 75 000 mol dm<sup>-3</sup> s<sup>-1</sup> for reaction 4, showing that the dienyl ligand in II is at least 65 times more electrophilic than the closely related enyl ligand in I.



Comparison with previous [3,4] kinetic data for addition of  $Ph_3P$  to other organometallic cations allows one to place the cobalt complexes I and II in a general reactivity order towards nucleophiles.  $[(C_7H_9)Co(C_5H_5)]^+ >$  $[(C_6H_7)Fe(CO)_3]^+ > [(2-MeOC_6H_6)Fe(CO)_3]^+ > [(C_7H_7)Cr(CO)_3]^+ >$   $[(C_8H_{11})Co(C_5H_5)]^+ > [(C_7H_9)Fe(CO)_3]^+$  (relative rates at 20°C ca. 400/40/8/6/6/1).

We are grateful to the SRC for a studentship to P.D.M., and to the University of Zurich Commission for a Scholarship to A.S.

# References

1 J. Lewis and A.W. Parkins, J. Chem. Soc. A, (1967) 1150.

2 A. Salzer, Inorg. Chim. Acta, submitted.

- 3 G.R. John and L.A.P. Kane-Maguire, J. Chem. Soc. Dalton, in press.
- 4 G.R. John and L.A.P. Kane-Maguire, unpublished results.

5 L.A.P. Kane-Maguire and D.A. Sweigart, Inorg. Chem., in press.